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The multifractal nature of the probability distribution for the head of a directed polymer in a
(1+1)-dimensional disordered medium is derived analytically. This is achieved by using a mapping of
the model into a corresponding “toy” model which consists of a classical particle in a combination of
a harmonic potential and a long-ranged random potential. We use the solution of the latter problem
that incorporates replica-symmetry breaking within the framework of a variational approximation.
The results are expressed in terms of a distribution f(a) reminiscent of that used in dynamical
systems. We compare our results with numerical simulations.

PACS: number(s) 05.40.+j, 05.20.-y, 75.10.Nr, 02.50.-r

I. INTRODUCTION

Systems subject to quenched disorder play a funda-
mental role in nature but are difficult to investigate an-
alytically. Attention has recently been focused on “sim-
ple” prototypes of these systems, including manifolds in
a random potential, and more specifically directed walks
in random media [1-10]. Such walks are characterized
by superdiffusivity ({(z*)) ~ t* with v > 1), and some
of their properties are known exactly in 1 + 1 dimen-
sions, for example, the value of v = % and the exponent
w governing free-energy fluctuations. Mappings from di-
rected polymers to the Kardar-Parisi-Zhang (KPZ) equa-
tion [11] for kinetic roughening of driven interfaces and
to the randomly stirred Burger’s equation [12,13] have
enhanced interest in these models.

Recently, we have reported on extensive numerical sim-
ulations on the probability distribution Ppp(z,t) for the
head of a directed polymer in 1+1 dimensions [10], where
t indicates the distance along the directed axis and z
marks the position in the transverse direction. Analy-
sis of the results has revealed a multifractal nature of
the probability distribution which can be summarized in
terms of a function f(a) similar to that used for dynam-
ical systems [14-21]. The probability distribution has a
very broad distribution and cannot be characterized by
a single exponent; rather its description requires a spec-
trum of exponents. The f(a) spectrum can be thought
of as a fingerprint — it encodes a vast amount of infor-
mation about a system, including both its average and
typical behavior which might be vastly different.

The directed-polymer probability distribution exhibits
scaling behavior in terms of the variable u = z /t‘-’f. Fur-
thermore, in terms of this variable, we have found that

Ppp(z,t) ~ exp {—alu'}, M)

where the exponent « is distributed for different realiza-
tions of the disorder as

P(a) = Nexp {—f(a) \u?}. (2)
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The mean probability distribution is given by Eq. (1)
with o = 1; this determines A\. The value a = 1 corre-
sponding to the mean distribution is generally very dif-
ferent from its typical value which corresponds to g,
the position of the minimum of f(a). Actually, we
have uncovered two different scaling regions: One for
0.25 < u < 1.1 where the index y satisfies y >~ 2.1 £ 0.1
and f(a) has a broad distribution, and another for v > 2
where y ~ 3.0 £ 0.1 and f(a) becomes trivial (very nar-
rowly distributed) for large u. In this work, we derive
analytically the properties of f(a) in the first region and
show that its universal features can be obtained from
a “toy” model consisting of a classical particle in one
dimension. We compare the analytic results with simu-
lations we have carried out on both the toy model and
directed polymers in 1 + 1 dimensions.

Parisi (3], Mézard [4], and Bouchaud and Orland [5]
have shown that under certain assumptions, one can map
the directed-polymer problem in 1+ 1 dimensions onto a
simpler toy model. This mapping can account for many
(though not all) of the properties of directed polymers.
The toy model [22,23] involves a classical particle in a
one-dimensional potential consisting of a harmonic part
and a spatially correlated random part. Its Hamiltonian
is given by

H= g-w2 +V(w), (3)
where w denotes the position of the particle and V(w) is

a random potential with a Gaussian distribution charac-
terized by

(V(w)) =0,

(4)

g

— 2 _|w—w|?*2 + const
3! | ’

V@)V (W) =~

where the angular brackets indicate averaging over the
random potential. By a Gaussian distribution, we mean:
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P[V(w)] = Nexp {—% / dwde'V (w)A(w — w')V(w’)}
(5)

with some appropriate function A(w).

‘We shall consider cases in which the potential has long-
range correlations, (i.e., 7 < 1), and as will be seen below
the mapping from directed polymers requires v = %— This
means that the “price” one pays for this simplification
is trading a model with no correlations (or short-range
correlations) of the random potential for a model with
long-range correlations of the disorder but independent
of “time.” Villain et al. [22] have studied the v = 3
case while investigating the effect of randomness on the
commensurate-incommensurate transition.

II. THE MAPPING

In this section we review the mapping between the two
models, mainly following Parisi’s approach. We start
with the directed-polymer partition function in 1 + 1
which is given by

(ZBp) = / [ dza(¥)lexp 4 - / dt %Z

zoe = [ astexp { - [t (58 + 6orV (a(0).0) |
©
with
(V(z,t)V(2',t)) = v3b(z — =')6(t — '), (7)

where k characterizes the stiffness of the polymer and
Bpp the inverse temperature. This partition function
sums over all configurations of a directed polymer (having
no overhangs) lying on a substrate with an uncorrelated
random potential. The spatial direction which always
increases is denoted “time” and labeled by t; the “trans-
verse” direction is labeled . (When switching from a
lattice description to a continuum description, x may ac-
quire some temperature dependence which may not be a
simple function of B, .)

Now let us replicate the partition function and carry
out the average over the (quenched) random potential,
obtaining

Z 6(za(t) —zp(t) | o - (8)

(a#ﬁ)

This expression looks like the Euclidean version of an n-body quantum-mechanical system with the following Hamil-

tonian:

1 82

— ).

(Of#ﬁ)

The ground state of this Hamiltonian is [2-5]:

[%o) = Nexp{ =L 3 Iaa sl ¢,
(k)
with

g = K‘ﬂgpvg/z'

(9)

(10)

(11)

Parisi [3] has suggested an approximate ansatz for the Green’s function of this model; his prescription entails simply
multiplying the “Bethe” wave function of Eq. (10) by a product of free Green’s functions, resulting in

Gpp(T1, ..., Tn) = Nexp ——E T2 — = E |za — x| - (12)
a,B
(a#ﬁ)

Compare this expression to the analogous expression for the toy-model Green’s function which can be obtained by
replicating the toy-model partition function defined by Egs. (3) and (4) and averaging it over the random potential:

GTM(wl, v (13)

,wn)=Nexp —_Z 2- 4(1_ ) Z ‘wa-wﬁiz >

(i)



48 MANIFOLDS IN RANDOM MEDIA: MULTIFRACTAL BEHAVIOR 163

Note that they are the same when one applies the follow-
ing identifications:

1
vy 2
17 K
5( < ¢4 (14)
w U= x/t%

Consequently, one sees that (subject to Parisi’s approx-
imation) the probability distributions are related through

<H)P((L’,t)> =7{%/d$2"'danDP(xlv"wxn)

=711i_r&)(t%)"‘1/dw2--'dwnGTM(wl,---,wn)
=t~ (Pru(u, B = %)),

where Pry(u, B) is the probability distribution of the toy
model for the particle to be at location u. Here 3 is the
inverse temperature in the toy model, which has acquired
a value of ¢3 via the mapping. Note that for large 3, the
toy-model probability distribution is asymptotically in-
dependent of 3, as is evident from the fact [23,24] that
all the moments calculated with this probability distri-
bution

%
(u?P) ﬁ:ooconst X (%) ,

approach a limit independent of 8. Thus for large t,

(PDP(QI, t)) t~ EPTM(’U, 8= OO)

(15)

(16)

large t

=t %PTM( ,,oo), (17)

which is the scaling we have observed from the numerical
simulation of the directed polymer [10].

]

<P'%M(W’ B)) = 11113}) /dwq+1 ce dwnqexP{‘ﬁH(wl’ i

where

H(wl,

10— 2l el

(22)

Mézard and Parisi [24] have observed that a good approx-
imation for the toy model can be obtained by replacing
the nonharmonic part of the Hamiltonian by a quadratic

one
- = E OabWaWh,

with the o parameters determined by the stationarity
condition of the variational free energy. (For other uses of
this method see Refs. [6] and [25-28].) These conditions
read

H,=E (23)

Note also that in the case of v = -;— the probability
distribution of the random potential is given by

L)) o

This corresponds to the choice

dP[V(w)] = [dV(w)]exp {—

n_ 1d
Alw—-uw") = Jdw —56(w —w') (19)
in Eq. (58). Note that here the derivative of V' has an

uncorrelated Gaussian distribution. The two-point aver-
age given in Eq. (4) follows simply from the fact that the
associated propagator of a free particle in one (temporal)
dimension scales like |w|. In practice, one can generate
such a potential by summing over the steps of a random
walker, whose average square displacement from the ori-
gin grows linearly with time, which corresponds here to
the variable w.

III. CALCULATION OF f(a):
REPLICA SYMMETRIC

Much of the average behavior of directed polymers is
dominated by rare events. In order to extract information
about typical events as well, it is useful to study the
moments of the probability distribution. Just as in the
derivation of Eq. (17), one can show that

(Peo(x,1)) ~ t~ % (Ply(u, B = t3)).

Hence, we will concentrate hereafter on the calculation
of the averaged ¢'" moment of the toy-model probabil-
ity distribution. We consider the general version of the
toy model with arbitrary v < 1, even though directed
polymers corresponds to y = 3.

One can express the gth moment as

(20)

awnq)} ’ (21)
w1="=wWe=w
[
~ Gaa G ~QG'a -
o=y (Ceet B2 ) T agy ()
and
Oaa = — Z Oab; (25)
b (#a)
where
Gab= [(n—0)",, (26)
and
F(%_’Y) 1—
§ = 2+ 27
SR YE) @0

These equations yield a replica-symmetric solution (in-
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variant under permutations of the replicas) at all tem-
peratures, as well as a solution with broken replica sym-
metry below a certain temperature 1/83.. The latter so-
lution agrees much better with the numerical value of the
two-point correlation function (w?) at low temperatures
exhibiting the correct low-temperature scaling limit (the
replica-symmetric solution yields an (w?) that diverges
at zero temperature). For the details of this calculation,
see Ref. [24].

Here we would like to use the variational approxi-
mation represented by H, [Eq. (23)] to calculate the
¢*® moments of the probability distribution. We start
by considering the replica-symmetric (RS) case, leaving
the more technically involved replica-symmetry-breaking
(RSB) solution to the next section.

For the RS case, the variation yields [24]

{2"7,31“"*”"@ =0 ifa#b
Oab =

—(n—1)2"78"7g ifa=b . (28)

The easiest method of calculating (P4,,) involves simply
carrying out the integrations over w; in Eq. (21) one-by-
one. Observe that

/deexp {—BHg(ws,. .. ,we)}

= Ng_1exp {—BHp_1(w1,..

with Hg_; characterized by renormalized parameters
pe—1 and op—1 related to pp and oy of Hy by

Lwe—1)}, (29)

to—1=A(€) e
oe—1 =)oy, (50)
with
T .
MO =715 )
Using Eq. (21) with H replaced by H,, we find
<P'%M(w’ B)) =N(g)exp {_qﬁzﬂq w2}
afp® o
= N(g)exp {—Ww } (32)
with
A .
.N'(‘I)—<27r> (M+qa)%’ (33)

where we have substituted

_ U+ ngo 2
g = pA(ng)A(ng—1)---A(g+1) = — .
q (ng)A(ng—1)--- A(g+1) PP Yrrapn

(34)
)

Toward our goal of calculating f(a), we now intro-
duce the function 7(g) (which bears some resemblance to
its counterpart in dynamical systems [10,15-18]) through
the definition

<P%M(waﬂ)> = (PI‘M(Q)’/B))T(‘I) .

We find (disregarding the small correction due to the
normalization constant which is negligible for sufficiently
large w):

(35)

1 +,Y—1T—(1+’Y)
1+ q*y"lT—(l-l-‘Y) !

where we have introduced the reduced temperature vari-
able:

bto
u+qo

m(q) =4¢ (36)

T = 5t (g (37)
Note that we have analytically continued the variable ¢
to be a real number satisfying —yT'*t" < ¢ < 0o and
that 7(q) does not exist for values of ¢ < —yT'1+7.

Next one obtains the multifractal spectrum f(a) by
calculating the Legendre transform of 7(g):

fla) =7(q) — qo (38)
with o = 7/(g). Using expression (36) for 7(q), we find

2
F(@) =717 (Va - VI I7-0)

Furthermore, expanding f(c) around its minimum (ap =
1+ 4=~ a+7) yields

1 2
fla) = m(a ao)”.
Mézard and Parisi [24] have found that the RS solution
is good for T > 1 but for lower T it should be replaced
by the RSB solution. Since we are interested in the long-
“time” behavior of directed polymers, we desire the low-
T behavior of the toy model (as T o« t=3). If we never-

theless take the RS result at low T, we find ag ~ T~ %
for v = % which does not agree with our numerical simu-
lations for the directed polymer where we have observed
ao ~ T~1. (See the discussion in Sec. V.) We will see in
the next section that the correct scaling at low tempera-

ture is obtained from the RSB solution.

(39)

(40)

IV. CALCULATION OF f(a)
REPLICA-SYMMETRY BREAKING

In order to derive the result for the case of RSB, we
reformulate the problem in the following way: Within the
framework of the variational approximation, we consider

nq
(P, 8)) = [ T] dabior =) 8(ug — whexp {—%ﬁ S+ agb;aabwawb}

a=1

_ [k dk

ng ngq ng
q . 0 B8 .
S exp {z az=1 kawa} /aLIl dwgexp {—5 Ea (bab — Oap)wowy — 1 aE=1 kawa} , (41)
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where

k=(ki,...,kg0,...,0),

=(w,...,w,0,...,0) (42)
are vectors of length ng, and the limit n — 0 must eventually be taken.
Recall that Ggp is defined:
Gap = (I — o)gbl, a,b=1,...,ngq; (43)
now let us denote by G the following ¢ X g submatrix of G:
éabzGaby a,b=1,...,q (44)
We then find
o\ 7 1 & [ dk; o 1 & .
#ro = () " @esort [T1 (52 ) expdi 3 kool = o5 3 KaCurks
i=1 a=1 a,b=1
g(n—1 . q .
= (%) (detG)~ % (DetG)Fexp —-g- > Glwluwd
a,b=1
] R 9 .
= (%) (detG)~%exp —-g Z G| w?p, (45)

a,b=1

where the limit n — 0 has been taken in the last line.

For the RS solution, this result coincides with that obtained by the previous method. We note that for the RSB
case this expression is not exact, rather it provides the leading contribution for sufficiently large w. It is not exact
because the permutation symmetry is broken. One should sum over all choices of the singled-out variables 1,...,q
and then divide by the number of such choices; more explicitly, one should make the replacement:

I'(ng—qg+ 1)T(g+1)

S(wr —w) - - - (wg — w) — T 1) > bwiy, —w) - (wi, —w) (46)
(21 ) ﬂq)
[
in Eq. (41) where (41,...,1%q) indicate any g distinct inte-
gers between 1 and ng. For technical reasons it is too dif- a(g) = {/\ (‘I)] (49)
ficult to obtain explicit results for general q and a matrix .
o with infinite-step RSB. However, by considering dif-  For the case of infinite-step RSB, the matrix G = (uI —

o)~ ! is represented by the pair (é, G(z)), which can in

ferent cases, we have been able to verify that the choice
turn be obtained from (&,o0(z)) which is a solution of

made in Eq. (41), i.e., having the g values grouped to-

gether in the left-hand corner of G, gives the dominant
contribution for large w?. This is due to the ultrametric
structure of the matrix ¢ and the fact that in the Parisi
scheme G(z) is a monotonic function [29]. (See the Ap-
pendix.)

To calculate 7(g), we must evaluate the coefficient of
—w? in Eq. (45):

a(q) = 5_‘, G (47)
a,b=1
Then in terms of this function, 7(g) is
_ a(9)

(again ignoring the contribution due to the normalizing
factor). Since & is also a hierarchical matrix, it has
an eigenvector of the form (1,...,1) with an associated
eigenvalue X. It then follows that

the stationarity conditions, Eqs. (24) and (25). Mézard
and Parisi [24] have supplied (&,0(z)). However, two
misprints occur in the expressions in their paper; they
are corrected below:

ffT‘l, 0O<z<z
14y
o@) = { (57) 4275, 2 <z <as (50)
( ) ‘ T,z <zT<l,
1
F= / dzo(x), (51)
0
where
1
A= u(:rl)_'ij—%, T = 1—-;—1T, and zp = ——%—’Z (52)



166 YADIN Y. GOLDSCHMIDT AND THOMAS BLUM 48

Using this solution, we calculate G [using Eqs. (AIL6)
and (AIL7) of Ref. [6] for inverting a hierarchical matrix];
we find

G=10p-1 (53)
O<zr<z

G(z) = 4 ,%T [1—2;1 - (f;)—ﬁ] , T1<T<T2 (54)

X=G- / ' G(a)d. (55)

Let us restrict our attention to the region 0 < ¢ < 1
for now. In that case, we find

0<g<x

1, g
uoouyT?

2
- =
—‘LT[H',Y—‘I—I—%%(%) ], 1 <9 <=2

Ag) =

®

2

2
1 |14y (2T uT e uT \ z1
\HT[ 5 (ml) ], To <z <l (56)
The eigenvalue X of é, the ¢ X ¢ submatrix of G, is given _ _
by (see the Appendix of Ref. [28]) Then using 7(q) = gA\(1)/A(q), we finally obtain
J
(1+7) L4y
e L 0<q< 3T
= [+ (ERD)T] L prca<ip 7
1— 211 14+
[1+;’1+3,T1—~] , Fr<g<l

We will now use the following analytic continuation to
define 7(q) outside the range 0 < q < 1: for ¢ > 1 we
continue to use the expression for ¢ > 1%1, and for ¢ < 0,
we use the expression for ¢ < -1—'2L"1T. Notice also that for
negative g, 7(q) is defined only for ¢ > —yT. Explicit
calculations for ¢ = 2 and negative ¢ have confirmed this
analytic continuation (for large w?). (See the Appendix.)
Expression (57) for 7(q) is valid for T < 1 where the RSB
solution exists. For T' > 1 one has to use the RS result,
Eq. (36), which coincides with Eq. (57) for T = 1.

In Fig. 1 we show a graph of 7(q) for v = % and
T = 0.5, and compare it with the RS result. Figure
2 depicts the corresponding f(a) obtained as a Legen-
dre transform of 7(g). In the vicinity of g, where f(a)
aquires its minimum, we would like to show the analytic
expression. Since oy is the slope of 7(¢) at ¢ = 0, we use
the expression for 7(q) in the region ¢ < —1—'-'2—'-'1T. We find
that in this region, its Legendre transform is given by

fle) =t (va- L2 )2. (58)

Thus for « near ap = 3;71,1.'1 we have

2
~ L+ (ﬂa _ 1) , (59)

From this result, we see that f(&) is independent of T
as found in our numerical simulations. This result, valid
for small T (T < 1) is to be contrasted with the RS
result, which if continued to small T' (where it is not the
correct solution) implies that f(7&=) is independent of
T in disagreement with our simulations. This is another

proof for the usefulness of the RSB solution.

One of the predictions arising from these calculations
is that (Piy(w)) diverges for some finite ¢ (¢ = —T
in the RSB calculation). What is the physical implica-
tion of this result if it is a genuine property of the toy
model? It provides some information on the sample-to-
sample distribution of probabilities. Let h[Prm(w)] be
the sample-to-sample distribution of probabilities at w,
so that

1
/0 B Pra(w)) Py (@)dPr(w) = (Phy(w)).  (60)

The divergence of (P{,/) at a finite, nonzero ¢ indicates

T(q)

FIG. 1. The function 7(g) derived from the variational
approach to the toy model. The O’s indicate the RS solution,
and o’s indicate the RSB solution.
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f(a)

FIG. 2. The corresponding f(a) spectra, i.e., the Legen-
dre transform of 7(g).

(1) that there is no minimal P (other than zero) since
(Pjy) would not diverge in such a case; and (2) that
h[P] vanishes at P = 0, since (Pf,) would diverge at
g < 0 if that were the case. If one assumes that h[P]
has a power-law distribution at small P, the divergence
of (P{\(w)) for ¢ < —T would imply

lim h[P] o pi+T, (61)

This prediction requires further numerical testing since
it relies on rare events.

V. SIMULATIONS

‘We have recently reported on the simulations of (1+1)-
dimensional directed polymers (for ¢ up to 1000) on
a disordered substrate, from which we have extracted
the average probability distribution and its moments
[10]. As mentioned in the Introduction, that investi-
gation has revealed that the universal part of Ppp(z,t)
scales as Ppp « exp{—aAu¥}, where the exponent ¢ is
distributed for different samples according to P(a)
exp{—f(a)Au?}. Furthermore, two scaling regimes were
found: the first (0.25 < u < 1.1) has y = 2.1 + 0.1 and
a broadly distributed f(a); and the second (u > 2) has
y = 3.0 £ 0.1 and an increasingly narrowly distributed
f(a) as u grows large. In the inner (nearly Gaussian)
region, the numerical data furnishes an f(«), which is
nearly independent of . In addition, at low tempera-
tures we have found that the position of its minimum,
ap, scales with time as ap o t%3 and with reciprocal
temperature as ag o B, . Let us compare this behavior
with the results found in the previous sections. We have
seen above that the toy-model calculations using the RS
variational approximation yield at low T, op o T—3/2
(for v = 1), while those using the RSB solution lead to
ap o< T~1. From the mapping between directed polymers
to the toy model [Eq. (14)] and the expression (37) for
T, we obtain

Tt o sM335/341/3, (62)

Note then that the RSB solution provides the correct
time dependence. The scaling with 3., is more subtle
since when switching from a lattice model (used for the
simulations) to a continuum model (used for the calcu-
lations), x acquires some nontrivial temperature depen-
dence. But even when the temperature dependence of
x is ignored, the RSB solution agrees more closely with
observation.

In order to test the analytic results directly without re-
lying on the mapping between the two models, we have
also simulated the toy model directly at finite temper-
ature, extracting again the average probability distribu-
tion and its moments. We have studied a lattice version
of the toy model with v = % and with the parameters 3,
u, and g chosen to facilitate comparison with our previ-
ous directed-polymer simulations. A suitable interval of
the particle’s position w (e.g., —4 < w < 4) is divided
into 5000 lattice sites. For a given realization, the algo-
rithm generates an independent random number for each
site r;; it then generates Vj, the correlated random po-
tential at site j, by summing the random numbers in the
following way:

V; ngn(i — J)rs. (63)

The quadratic term of the Hamiltonian is added to this
random potential, and then the partition function and
probability distribution are calculated. We have gener-
ated 50000 realizations of 50 different moments of the
probability distribution (P, (w,3)) for —2.0 < ¢ < 3.0
to determine 7(q).

The toy-model simulations reveal that as found for
directed polymers the averaged probability distribution
Pryi(w) has two scaling regimes. (See Fig. 3.) The av-
eraged probability distribution scales in the same way
as it does for directed polymers in both regions: ~

exp{—A1u?} and ~ exp{—Azu3}, in the inner and outer
regions, respectively. The scaling in the outer region
agrees with the predictions of Villain et al. [22]. We have
checked also for the dependence of oy on T~ for values
of T~! between 4 and 20 and obtained a nearly linear
dependence (a power of ~ 1.14 by a fit to five points).

VI. DISCUSSION

The mapping from (1 + 1)-dimensional directed poly-
mers to the toy model is successful on several counts. In
addition to accurately predicting the large-u scaling of
the probability distribution, it yields the correct ¢ depen-
dence of (z?(t)) and (z2(t))— (z(t))? as well as higher mo-
ments and cumulants. However, one should note that it
cannot be expected to reproduce every feature of directed
polymers. In fact, as Mézard [4] has already pointed out,
the mapping predicts

({ln[Ppp(z,t)] ~ In [Pop(0,8)]}?)

—(In [Ppp(z, t)] —In (Por (0, t)])z o |z|, (64)

but this behavior is seen only for small |z|; it saturates
for larger values of |z|.
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(u)>/A(q)]

q
R

-logy[ <

10»1 L i il

10°
u

FIG. 3. A log-log plot of {—1log;o[(Pf\(u))/A(g)]} vs u,
where A(gq) = max[(Pf\(u))] for 8 = 10.0, p = 2.2, and
g=4.6forg=1, 2, and 3.

Nevertheless, we have demonstrated in this paper how
more of the universal features (especially the multifrac-
tal behavior) of the directed-polymer problem can be de-
duced from the toy model. The analytical results employ
a recently introduced variational scheme that allows for
replica-symmetry breaking. We have used it to calculate
moments of the probability distribution. Note that this
analysis only applies to the inner scaling regime of the
probability distribution where u is not too large. In that
region the directed-polymer distribution behaves roughly
like exp{—X1u?} and is therefore consistent with the
Gaussian form obtained from the Gaussian variational
scheme.

We have tested the predictions that have emerged con-
cerning the scaling properties of f(a). The mapping
requires that toy model be examined at low tempera-
ture, where the variational procedure yields both a solu-
tion maintaining replica symmetry and a solution with
infinite-step replica-symmetry breaking. We have found
that the latter reproduces more accurately the scaling
behavior of the f(a) spectrum than does the former.

For larger values of u, our simulations have revealed a
behavior like exp{—MAu3}. This is still consistent with
the toy-model probability distribution in the tail region
as discussed by Villain et al. [22], but it cannot be derived
from the variational approximation to the toy model
which yields a Gaussian form for the probability distribu-
tion. In the tail region, we have found from simulations
that the function f(a) becomes trivial for large u, so the
situation is simpler.
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APPENDIX A

In this appendix we provide arguments to support our
claim that in the case of RSB, the permutation taken in
Eq. (41) yields the leading contribution to the averaged

gth moment of the probability distribution. Although
we do not have a general proof, we show how it holds for
several specific examples.

First let us consider the case in which G is charac-
terized by a one-step replica-symmetry breaking. (One-
step RSB can be viewed as an approximation to infinite-
step breaking.) In this case, one can express the ma-
trix indices @ = 1,...,n as pairs (k,v) with a = m(k —
1)+ v where k = 1,..., 2 and v = 1,...,m and then
parametrize G in the following way:

g ifk=kK andy=+
Giyikry =4 91 ifk=FK and v#+
go ifk#K.

(A1)

(Note that we have relabeled ng by n since n — 0 at
the end.) Now one must choose ¢ indices from the n
possible values and consider G, the corresponding g x ¢
submatrix of G. Notice that before the n — 0 limit one
has 1 < m < n and one must distinguish between two
cases: (1)1 <g<m<nand(2)1<m<qg<n.

We now assume that the chosen ¢ indices are dis-
tributed equally among ¢/p groups such that there are
p indices in each group. Clearly, this is not the most
general case; we were able to analyze the most general
case only for go = 0; see below. The ¢ x ¢ matrix G thus
contains q/p blocks along the diagonal of size p x p each.
The value of the matrix elements within these blocks is g3
(except along the diagonal), and the value outside these
blocks is go. Along the diagonal the value is §. That is,
G has the same form as G in Eq. (A1) with n — ¢ and
m — p. The eigenvalue X associated with this matrix G
is

A=G+ (p—1)g1 + (g — p)go,

and hence the contribution from the permutations char-
acterized by this choice is

(P1(w)) ~ exp {—ﬁqi_leﬂ}

with

(A2)

(A3)

Q= a .
g — 91+ ag90 +p(g1 — go)

(A4)

Since g; > go [which is a general property of G(z) since it
increases monotonically with z], we see that for case (1)
above the minimum of gA~! is obtained for p = ¢, and
for case (2) it is obtained for p = m, which corresponds
to having the largest number of indices come from the
same group. As n — 0, case (1) becomes 0 <m < ¢g<1
and case (2) becomes 0 < ¢ < m < 1. So we find

) EE Ve m<q
q)\_1 = (A5)
q
T Daita—mg IS

but this is exactly what one obtains from the expression

5=g- [ o) (A6)
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with

9(z) = {go’ z=m

g, m < z, (A7)

which has been used in Sec. IV, where all the g indices
are grouped together in the upper left corner of G. Thus,
this choice supplies the largest contribution for large w,
at least among permutations with equal divisions of ¢
indices among different groups.

To consider a more general division, consider the case
go = 0. In that case the matrix G consists of unequal
blocks of size q1,42,...,q¢ with ¢ = Y. ¢; and ¢; < m,
where all elements of each block have the value g; except
for the value § on the diagonal. Outside the blocks all
elements vanish. The inverse of this matrix G can be cal-
culated exactly. (It is no longer a Parisi-type hierarchical
matrix since groups are not of equal size.) One then adds
up all elements of the matrix to find their sum S [see Eq.

(45)]

q:
zi: g+ (a—Dgo (
For 1 < ¢ < m < n it is clear that the minimum value of
the sum is obtained for one group of size g:
q qi
= —= — Ag)
g+(g- 1o Xi:g+(q—1)g1 (
which is evidently smaller than Eq. (A8) since all ¢; < g.
For the case 1 < m < ¢ < n one has to take g to be
some multiple of m and then since ¢; < m the minimum

is obtained when all ¢; = m, i =1,..., ;,‘11- and thus
q
=7 Al0
G+ (m—-1)g (A10)

As n — 0 this is exactly what has been claimed.

So far the discussion has been confined to 0 < ¢ < 1.
To show the analytic continuation of this formalism for
q outside this region, we consider the case of ¢ = 2 with

infinite-step RSB. For this case the result can be obtained
similarly to the calculation of Mézard and Parisi [6], who
considered the average (P(w)P(w’)) by putting w = w’.
Although their result (AIIL.7)is correct for one-step RSB,
there is unfortunately a misprint in formula (VI.17) for
the general case which should read

(P(w)P(w"))

_ fi/l @
2r Jo /32— g%*(z)
xexp{ ﬂg(w +w’ ) — 2g9(z)ww’ },

- 9%(z)
where we use § and g(z) instead of their § and g(u) and
have also added the inverse temperature variable 8. Next
putting w = w’, we obtain

(A11)

2 _ B ! dz L W
) =5 [ T e )
(A12)
and the leading contribution for large w is
w2
(P*(w)) = exp { - ey } (A13)
but
B _B_2 _ By

and thus this is exactly the result for ¢ = 2 as obtained in
Sec. IV showing that for ¢ = 2 and infinite-step RSB our
scheme gives the correct answer. We have demonstrated
our claim for a few different cases; the reader is challenged
to find a more general proof.
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